Mitochondrial preproteins as markers for Alzheimer's disease

Technology

Most mitochondrial proteins possess N-terminal presequences that are required for targeting and import into the organelle. Upon import presequences are cleaved off by matrix processing peptidases and subsequently degraded by the peptidasome Cym1/PreP that also degrades Amyloid-beta peptides ($A\beta$). We found that $A\beta$ which accumulates in mitochondria of Alzheimer's disease (AD) patients early during pathogenesis inhibits peptidasome activity resulting in a feedback inhibition of presequence processing enzymes. This leads consequently to the accumulation of immature preproteins in mitochondria which causes a variety of dysfunctions that were described for AD. Due to the presence of the (non-processed) presequence these preproteins can be distinguished by their different molecular weight or by using presequence specific antibodies. Both methods revealed a specific appearance of immature preproteins in mitochondria from post mortem brain samples of AD patients. A specific accumulation of mitochodrial preproteins can also be observed in blood cells of AD patients opening the chance of a novel diagnostic tool.

Innovation

- Mitochondrial preproteins specifically accumulate in their immature form in AD patients.
- Mature and immature species can be distinguished by their size difference or using presequence specific antibodies
- This method will allow early AD diagnosis in easy available samples (e.g. blood or fibroblasts)

Application

- Early AD diagnosis in living patients
- Post mortem AD diagnosis for evaluation purposes
- Easy measurable parameter during therapy

Developmental Status

- Several presequence specific antibodies available
- Large study for test in blood cells has started
- - > Mossmann et al. (2014) Cell Metabolism 20, 662-669

Responsible Scientist

Prof. Dr. Chris Meisinger

Albert-Ludwigs University Freiburg, Institute of Biochemistry and Molecularbiology

Branch

Diagnostic

Patent Status

EP and US patent application pending

WO2015132397

Filed (PRD) March 7th 2014

Reference Number

ZEE20121213

Status: Sept -17

CTF – The R&D Company of the Freiburg University and the Freiburg University Medical Center

Contact

Dr. Claudia Skamel
Campus Technologies Freiburg GmbH
Stefan-Meier-Str. 8 | D-79104 Freiburg
Email: Claudia.Skamel@campus-technologies.de
Tel: +49 (0)761 203-4987
Fax:+49 (0)761 203-5021

Figure 1: Model how $A\beta$ peptide leads to accumulation of immature preproteins in mitochondria.

Figure 2: Accumulation of immature mitochondrial Malat Dihydrogenase (MDH2) (star) in post mortem brain mitochondria of AD patients. C1-4, age-matched controls.

Figure 3: Specific detection of MDH2 preprotein in AD brain mitochondria using a presequence specific antibody.

Figure 4: Specific detection of MDH2 preprotein in non-monocytes from PBMC fractions of AD and age-matched control blood samples.